Blei, D. M., Ng, A. Y., & Edu, J. B. (2003). Latent Dirichlet Allocation Michael I. Jordan. Journal of Machine Learning Research, 3.
Boucher, J.-C., Cornelson, K., Benham, J. L., Fullerton, M. M., Tang, T., Constantinescu, C., Mourali, M., Oxoby, R. J., Marshall, D. A., Hemmati, H., Badami, A., Hu, J., & Lang, R. (2021). Analyzing Social Media to Explore the Attitudes and Behaviors Following the Announcement of Successful COVID-19 Vaccine Trials: Infodemiology Study.
JMIR Infodemiology,
1(1), e28800.
https://doi.org/10.2196/28800
Bradshaw, A. S. (2023).
To Share or Not to Share: A Framing Analysis of Paid Vaccine Advertisements on Facebook during COVID-19 and Pro-Vaccine Mothers’ Willingness to Promote Vaccines within Their Peer Networks,
https://doi.org/10.1080/10641734.2022.2153392
Cascini, F., Pantovic, A., Al-Ajlouni, Y. A., Failla, G., Puleo, V., Melnyk, A., Lontano, A., & Ricciardi, W. (2022). Social media and attitudes towards a COVID-19 vaccination: A systematic review of the literature.
EClinicalMedicine,
48, 101454.
https://doi.org/10.1016/j.eclinm.2022.101454
Compton, R., Jurgens, D., & Allen, D. (2014). Geotagging one hundred million Twitter accounts with total variation minimization. In: Big Data : 2014 IEEE International Conference on Big Data; 27-30 October 2014; Washington, DC, USA. pp 8
https://doi.org/10.1109/BigData.2014.7004256
Farhart, C. E., Douglas-Durham, E., Lunz Trujillo, K., & Vitriol, J. A. (2022). Vax attacks: How conspiracy theory belief undermines vaccine support.
Progress in Molecular Biology and Translational Science,
188(1), 135-169.
https://doi.org/10.1016/bs.pmbts.2021.11.001
Gottlieb, M., & Dyer, S. (2020). Information and Disinformation: Social Media in the COVID-19 Crisis.
Academic Emergency Medicine : Official Journal of the Society for Academic Emergency Medicine,
27(7), 640-641.
https://doi.org/10.1111/acem.14036
Gravelle, T. B., Phillips, J. B., Reifler, J., & Scotto, T. J. (2008).
Estimating the size of ‘anti-vax’ and vaccine hesitant populations in the US, UK, and Canada: comparative latent class modeling of vaccine attitudes,
18(1).
https://doi.org/10.1080/21645515.2021.2008214
Griffith, J., Marani, H., & Monkman, H. (2021). COVID-19 Vaccine Hesitancy in Canada: Content Analysis of Tweets Using the Theoretical Domains Framework.
Journal of Medical Internet Research,
23(4), e26874.
https://doi.org/10.2196/26874
Hayashi, H., Tan, A. S. L., Kawachi, I., Ishikawa, Y., Kondo, K., & Kondo, N. (2019). Toru Tsuboya & Kasisomayajula Viswanath (2020) Interpersonal Diffusion of Health Information: Health Information Mavenism among People Age 65 and over in Japan.
Health Communication,
35(7), 804-814.
https://doi.org/10.1080/10410236.2019.1593078
Hutto, C. J., & Gilbert, E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. In: Proceedings of the Eighth International AAAI Conference on Weblogs and Social Media; pp 216-225.
Jang, H., Rempel, E., Roe, I., Adu, P., Carenini, G., & Janjua, N. Z. (2022). Tracking Public Attitudes Toward COVID-19 Vaccination on Tweets in Canada: Using Aspect-Based Sentiment Analysis.
Journal of Medical Internet Research,
24(3), e35016.
https://doi.org/10.2196/35016
Kaushal, A., Mandal, A., Khanna, D., & Acharjee, A. (2023). Analysis of the opinions of individuals on the COVID-19 vaccination on social media.
Digital Health,
9, 20552076231186250.
https://doi.org/10.1177/20552076231186246
Kemei, J., Alaazi, D. A., Tulli, M., Kennedy, M., Tunde-Byass, M., Bailey, P., Sekyi-Otu, A., Murdoch, S., Mohamud, H., Lehman, J., & Salami, B. (2022). A scoping review of COVID-19 online mis/disinformation in Black communities.
Journal of Global Health,
12, 5026.
https://doi.org/10.7189/jogh.12.05026
Khan, M. L., Malik, A., Ruhi, U., & Al-Busaidi, A. (2022). Conflicting attitudes: Analyzing social media data to understand the early discourse on COVID-19 passports.
Technology in Society,
68, 101830.
https://doi.org/10.1016/j.techsoc.2021.101830
Ljajić, A., Prodanović, N., Medvecki, D., Bašaragin, B., & Mitrović, J. (2022). Uncovering the Reasons Behind COVID-19 Vaccine Hesitancy in Serbia: Sentiment-Based Topic Modeling.
Journal of Medical Internet Research,
24(11), e42261.
https://doi.org/10.2196/42261
Lyu, J. C., Han, E Le, & Luli, G. K. (2021). COVID-19 Vaccine-Related Discussion on Twitter: Topic Modeling and Sentiment Analysis.
Journal of Medical Internet Research,
23(6).
https://doi.org/10.2196/24435
Mohammadi, E., Tahamtan, I., Mansourian, Y., & Overton, H. (2022). Identifying Frames of the COVID-19 Infodemic: Thematic Analysis of Misinformation Stories Across Media.
JMIR Infodemiology,
2(1), e33827.
https://doi.org/10.2196/33827
Nelson, V., Bashyal, B., Tan, P.-N., & Argyris, Y. A. (2024). Vaccine rhetoric on social media and COVID-19 vaccine uptake rates: A triangulation using self-reported vaccine acceptance.
Social Science & Medicine (1982),
348, 116775.
https://doi.org/10.1016/j.socscimed.2024.116775
Park, H., & Reber, B. H. (2010). Using public relations to promote health: a framing analysis of public relations strategies among health associations.
Journal of Health Communication,
15(1), 39-54.
https://doi.org/10.1080/10810730903460534
Patrick, M., Venkatesh, R. D., & Stukus, D. R. (2022). Social media and its impact on health care.
Annals of Allergy, Asthma & Immunology : Official Publication of the American College of Allergy, Asthma, & Immunology,
128(2), 139-145.
https://doi.org/10.1016/j.anai.2021.09.014
Pelletier, C., Labbé, F., Bettinger, J. A., Curran, J., Graham, J. E., Greyson, D., MacDonald, N. E., Meyer, S. B., Steenbeek, A., Xu, W., & Dubé, È (2023). From high hopes to disenchantment: A qualitative analysis of editorial cartoons on COVID-19 vaccines in Canadian newspapers.
Vaccine,
41(30), 4384-4391.
https://doi.org/10.1016/j.vaccine.2023.06.002
Quigley, M., Whiteford, S., Cameron, G., Zuj, D. V., & Dymond, S. (2023). Longitudinal assessment of COVID-19 fear and psychological wellbeing in the United Kingdom.
Journal of Health Psychology,
28(8), 726-738.
https://doi.org/10.1177/13591053221134848
Reynolds, J. (2022). Framings of risk and responsibility in newsprint media coverage of alcohol licensing regulations during the COVID-19 pandemic in England.
Drug and Alcohol Review,
https://doi.org/10.1111/dar.13532
Rotolo, B., Dubé, E., Vivion, M., MacDonald, S. E., & Meyer, S. B. (2022a). Hesitancy towards COVID-19 vaccines on social media in Canada.
Vaccine,
40(19), 2790-2796.
https://doi.org/10.1016/j.vaccine.2022.03.024
Rotolo, B., Dubé, E., Vivion, M., MacDonald, S. E., & Meyer, S. B. (2022b). Hesitancy towards COVID-19 vaccines on social media in Canada.
Vaccine,
40(19), 2790-2796.
https://doi.org/10.1016/j.vaccine.2022.03.024
Sarkar, M. A., Ozair, A., Singh, K. K., Subash, N. R., Bardhan, M., & Khulbe, Y. (2021). SARS-CoV-2 Vaccination in India: Considerations of Hesitancy and Bioethics in Global Health.
Annals of Global Health,
87(1), 124.
https://doi.org/10.5334/aogh.3530
Skafle, I., Nordahl-Hansen, A., Quintana, D. S., Wynn, R., & Gabarron, E. (2022). Misinformation About COVID-19 Vaccines on Social Media: Rapid Review.
Journal of Medical Internet Research,
24(8), e37367.
https://doi.org/10.2196/37367
Slavik, C. E., Buttle, C., Sturrock, S. L., Darlington, J. C., & Yiannakoulias, N. (2021). Examining Tweet Content and Engagement of Canadian Public Health Agencies and Decision Makers During COVID-19: Mixed Methods Analysis.
Journal of Medical Internet Research,
23(3), e24883.
https://doi.org/10.2196/24883
Smith, R. A., Bone, C., Visco, A., Calo, W. A., Wright, J., Groff, D., & Lennon, R. P. (2022a). Skeptical Health Mavens May Limit COVID-19 Vaccine Diffusion: Using the Innovation Diffusion Cycle to Interpret Results of a Cross-sectional Survey among People Who are Socially Vulnerable.
Journal of Health Communication,
27(6), 375-381.
https://doi.org/10.1080/10810730.2022.2111619
Smith, R. A., Bone, C., Visco, A., Calo, W. A., Wright, J., Groff, D., & Lennon, R. P. (2022b). Skeptical Health Mavens May Limit COVID-19 Vaccine Diffusion: Using the Innovation Diffusion Cycle to Interpret Results of a Cross-sectional Survey among People Who are Socially Vulnerable.
Journal of Health Communication,
27(6), 375-381.
https://doi.org/10.1080/10810730.2022.2111619
Taylor, S., Landry, C. A., Paluszek, M. M., Rachor, G. S., & Asmundson, G. J. G. (2020). Worry, avoidance, and coping during the COVID-19 pandemic: A comprehensive network analysis.
Journal of Anxiety Disorders,
76, 102327.
https://doi.org/10.1016/j.janxdis.2020.102327
Trotochaud, M., Smith, E., Hosangadi, D., & Sell, T. K. (2023). Analyzing Social Media Messaging on Masks and Vaccines: A Case Study on Misinformation During the COVID-19 Pandemic.
Disaster Medicine and Public Health Preparedness, 1-9.
https://doi.org/10.1017/dmp.2023.16
van Prooijen, J.-W., & Douglas, K. M. (2018). Belief in conspiracy theories: Basic principles of an emerging research domain.
European Journal of Social Psychology,
48(7), 897-908.
https://doi.org/10.1002/ejsp.2530
Weerasinghe, S., Oyebode, O., Orji, R., & Matwin, S. (2023a). Dynamics of emotion trends in Canadian Twitter users during COVID-19 confinement in relation to caseloads: Artificial intelligence-based emotion detection approach.
DIGITAL HEALTH,
9, 205520762311714.
https://doi.org/10.1177/20552076231171496
Weerasinghe, S., Oyebode, O., Orji, R., & Matwin, S. (2023b). Dynamics of emotion trends in Canadian Twitter users during COVID-19 confinement in relation to caseloads: Artificial intelligence-based emotion detection approach.
DIGITAL HEALTH,
9, 205520762311714.
https://doi.org/10.1177/20552076231171496
Yiannakoulias, N., Darlington, J. C., Slavik, C. E., & Benjamin, G. (2022). Negative COVID-19 Vaccine Information on Twitter: Content Analysis.
JMIR Infodemiology,
2(2), e38485.
https://doi.org/10.2196/38485