Barnidge, M., & Rojas, H. (2014). Hostile media perceptions, presumed media influence, and political talk: Expanding the corrective action hypothesis.
Int J Public Opin Res,
26(2), 135-156.
https://doi.org/10.1093/ijpor/edt032
Broniatowski, D. A., Dredze, M., & Ayers, J. W. -2021. “First do no harm”: Effective communication about covid-19 vaccines.
American Journal of Public Health,
111(6), 1055-1057.
https://doi.org/10.2105/ajph.2021.306288
Cheng, Y., & Luo, Y. (2021). The presumed influence of digital misinformation: Examining us public’s support for governmental restrictions versus corrective action in the covid-19 pandemic.
Online Information Review,
45(4), 834-852.
https://doi.org/10.1108/OIR-08-2020-0386
Chung, M. (2023). What’s in the black box? How algorithmic knowledge promotes corrective and restrictive actions to counter misinformation in the USA, the UK, South Korea and Mexico.
Internet Research,
33(5), 1971-1989.
https://doi.org/10.1108/INTR-07-2022-0578
Chung, S., & Moon, S. I. (2016). Is the third-person effect real? A critical examination of rationales, testing methods, and previous findings of the third-person effect on censorship attitudes.
Human Communication Ressearch,
42, 312-337.
Cohen, J., & Weimann, G. (2008). Who’s afraid of reality shows?: Exploring the effects of perceived influence of reality shows and the concern over their social effects on willingness to censor.
Communication Research,
35(3), 382-397.
https://doi.org/10.1177/0093650208315964
David, P., Morrison, G., Johnson, M. A., & Ross, F. (2002). Body image, race, and fashion models: Social distance and social identification in third-person effects.
Communication Research,
29(3), 270-294.
Dohle, M., Bernhard, U., & Kelm, O. (2017). Presumed media influences and demands for restrictions: Using panel data to examine the causal direction.
Mass Communication and Society,
20(5), 595-613.
https://doi.org/10.1080/15205436.2017.1303072
Ecker, U. K. H., Lewandowsky, S., Fenton, O., & Martin, K. (2014). Do people keep believing because they want to? Preexisting attitudes and the continued influence of misinformation.
Memory & Cognition,
42(2), 292-304.
https://doi.org/10.3758/s13421-013-0358-x
Eveland, W. P. Jr, & McLeod, D. M. (1999). The effect of social desirability on perceived media impact: Implications for third-person perceptions.
International Journal of Public Opinion Research,
11(4), 315-333.
https://doi.org/10.1093/ijpor/11.4.315
Eveland, W. P. Jr, Nathanson, A. I., Detenber, B. H., & Mcleod, D. M. (1999). Rethinking the social distance corollary: Perceived likelihood of exposure and the third-person perception.
Communication Research,
26(3), 275-302.
https://doi.org/10.1177/009365099026003001
Fuller, C. M., Simmering, M. J., Atinc, G., Atinc, Y., & Babin, B. J. (2016). Common methods variance detection in business research.
Journal of Business Research,
69(8), 3192-3198.
https://doi.org/10.1016/j.jbusres.2015.12.008
Golan, G. J., & Lim, J. S. (2016). Third-person effect of isis’s recruitment propaganda: Online political self-efficacy and social media activism [third-person effect, terrorism, propaganda, social media, recruitment, militant Islamism, social distance].
International Journal of Communication,
10(1), 4681-4701.
http://ijoc.org/index.php/ijoc/article/view/5551/1792
Gunther, A. C. (1995). Overrating the X-rating: The third-person perception and support for censorship of pornography.
Journal of Communication,
45, 27-38.
Harff, D., Bollen, C., & Schmuck, D. (2022). Responses to social media influencers’ misinformation about COVID-19: A pre-registered multiple-exposure experiment.
Media Psychology,
25(6), 831-850.
https://doi.org/10.1080/15213269.2022.2080711
Hoffner, C., Buchanan, M., Anderson, J. D., Hubbs, L. A., Kamigaki, S. K., Kowalczyk, L., Pastorek, A., Plotkin, R. S., & Silberg, K. J. Support for censorship of television violence: The role of the thirdperson effect and news exposure. Commun. Res, (1999). 26, 726-742.
Hong, Y., & Kim, S. (2020). Influence of presumed media influence for health prevention: How mass media indirectly promote health prevention behaviors through descriptive norms.
Health Communication,
35(14), 1800-1810.
https://doi.org/10.1080/10410236.2019.1663585
Jang, S. M., & Kim, J. K. (2018). Third person effects of fake news: Fake news regulation and media literacy interventions.
Computers in human behavior,
80, 295-302.
Koo, A. Z.-X., Su, M.-H., Lee, S., Ahn, S.-Y., & Rojas, H. (2021). What motivates people to correct misinformation? Examining the effects of third-person perceptions and perceived norms.
Journal of Broadcasting & Electronic Media,
65(1), 111-134.
https://doi.org/10.1080/08838151.2021.1903896
Kozyreva, A., Herzog, S. M., Lewandowsky, S., Hertwig, R., Lorenz-Spreen, P., Leiser, M., & Reifler, J. (2023). Resolving content moderation dilemmas between free speech and harmful misinformation.
Proceedings of the National Academy of Sciences,
120(7), e2210666120,
Lazer, D. M. J., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., Metzger, M. J., Nyhan, B., Pennycook, G., Rothschild, D., Schudson, M., Sloman, S. A., Sunstein, C. R., Thorson, E. A., Watts, D. J., & Zittrain, J. L. (2018). The science of fake news.
Science,
359(6380), 1094-1096.
https://doi.org/10.1126/science.aao2998
Lim, J. S. (2017). The third-person effect of online advertising of cosmetic surgery: A path model for predicting restrictive versus corrective actions.
Journalism and Mass Communication Quarterly,
94(4), 972-993.
https://doi.org/10.1177/1077699016687722
Lim, J. S., Chock, T. M., & Golan, G. J. (2020). Consumer perceptions of online advertising of weight loss products: The role of social norms and perceived deception.
Journal of Marketing Communications,
26(2), 145-165.
https://doi.org/10.1080/13527266.2018.1469543
Lim, J. S., & Golan, G. J. (2011). Social media activism in response to the influence of political parody videos on youtube.
Communication Research,
38(5), 710-727.
https://doi.org/10.1177/0093650211405649
, Lo, & Wei, Ran (2002). Third-Person Effect, Gender, and Pornography on the lnternet.
Journal of Broadcasting & Electronic Media,
46(1), 13-33.
Loomba, S., de Figueiredo, A., Piatek, S. J., de Graaf, K., & Larson, H. J. (2021). Measuring the impact of covid-19 vaccine misinformation on vaccination intent in the uk and USA.
Nature Human Behaviour,
5(3), 337-348.
https://doi.org/10.1038/s41562-021-01056-1
Luo, Y., & Cheng, Y. The Presumed Influence of COVID-19 Misinformation on Social Media: Survey Research from Two Countries in the Global Health Crisis.
International Journal of Environmental Research and Public Health,
18(11), 5505.
https://doi.org/10.3390/ijerph18115505
Martínez-Costa, M.-P., López-Pan, F., Buslón, N., & Salaverría, R. (2023). Nobody-fools-me perception: Influence of age and education on overconfidence about spotting disinformation.
Journalism Practice,
17(10), 2084-2102.
https://doi.org/10.1080/17512786.2022.2135128
McCabe, D. (2021, December 2). Lawmakers target big tech ‘amplification.’ what does that mean? The New York Times, B1.
McLeod, D. M., Eveland, W. P. Jr, & Nathanson, A. I. (1997). Support for censorship of violent and misogynic rap lyrics: An analysis of the third-person effect.
Communication Research,
24(2), 153-174.
https://doi.org/10.1177/009365097024002003
McNaghten, A. D., Brewer, N. T., Hung, M.-C., Lu, P.-J., Daskalakis, D., Abad, N., Kriss, J., Black, C., Wilhelm, E., Lee, J. T., Gundlapalli, A., Cleveland, J., Elam-Evans, L., Bonner, K., & Singleton, J. (2022). Covid-19 vaccination coverage and vaccine confidence by sexual orientation and gender identity - united states, august 29-october 30, 2021.
MMWR. Morbidity and mortality weekly report,
71(5), 171-176.
https://doi.org/10.15585/mmwr.mm7105a3
Naab, T. K., Naab, T., & Brandmeier, J. (2021). Uncivil user comments increase users’ intention to engage in corrective actions and their support for authoritative restrictive actions.
Journalism & Mass Communication Quarterly,
98(2), 566-588.
https://doi.org/10.1177/1077699019886586
Riedl, M. J., Whipple, Kelsey N., & Wallace, Ryan (2022). Antecedents of support for social media content moderation and platform regulation: the role of presumed effects on self and others.
Information, Communication & Society,
25(11), 1632-1649.
https://doi.org/10.1080/1369118X.2021.1874040
Rojas, H. (2010). “Corrective” actions in the public sphere: How perceptions of media and media effects shape political behaviors.
International Journal of Public Opinion Research,
22(3), 343-363.
https://doi.org/10.1093/ijpor/edq018
Rojas, H., Shah, D. V., & Faber, R. J. (1996). For the good of others: Censorship and the third-person effect.
International Journal of Public Opinion Research,
8(2), 163-186.
https://doi.org/10.1093/ijpor/8.2.163
Shen, L., & Huggins, C. (2013). Testing the model of influence of presumed influence in a boundary condition: The impact of question order.
Human Communication Research,
39(4), 470-491.
https://doi.org/10.1111/hcre.12013
Sun, Y. (2022). Verification Upon Exposure to COVID-19 Misinformation: Predictors, Outcomes, and the Mediating Role of Verification.
Science Communication,
44(3), 261-291.
https://doi.org/10.1177/10755470221088927
Sun, Y., Oktavianus, J., Wang, S., & Lu, F. (2022). The role of influence of presumed influence and anticipated guilt in evoking social correction of covid-19 misinformation.
Health Communication,
37(11), 1368-1377.
https://doi.org/10.1080/10410236.2021.1888452
Tal-Or, N., Cohen, J., Tsfati, Y., & Gunther, A. C. (2010). Testing causal direction in the influence of presumed media influence.
Communication Research,
37(6), 801-824.
https://doi.org/10.1177/0093650210362684
Thompson, S. A., & Alba, D. (2022). Heroic tales spread fast, and the facts trail behind. The New York Times, B1.
Tsfati, Y., & Cohen, J. (2005). The influence of presumed media influence on democratic legitimacy the case of Gaza settlers.
Communication Research,
32(6), 794-821.
https://doi.org/10.1177/0093650205281057
Vijaykumar, S., Jin, Y., Rogerson, D., Lu, X., Sharma, S., Maughan, A., & Morris, D. (2021). How shades of truth and age affect responses to COVID-19 (Mis)information: randomized survey experiment among WhatsApp users in UK and Brazil.
Humanities and Social Sciences Communications,
8(1), 88.
https://doi.org/10.1057/s41599-021-00752-7
Wang, S., & Kim, K. J. (2020). Restrictive and corrective responses to uncivil user comments on news websites: The influence of presumed influence.
Journal of Broadcasting & Electronic Media, 1-20.
https://doi.org/10.1080/08838151.2020.1757368
Wei, R., Lo, V. H., & Golan, G. (2017). Examining the relationship between presumed influence of US news about China and the support for the Chinese government’s global public relations campaigns. International Journal of Communication, 11, 18,
Wintterlin, F., Frischlich, L., Boberg, S., Schatto-Eckrodt, T., Reer, F., & Quandt, T. (2021). Corrective actions in the information disorder.
The role of presumed media influence and hostile media perceptions for the countering of distorted user-generated content. Political Communication,
38(6), 773-791.
https://doi.org/10.1080/10584609.2021.1888829